A Class of Deterministic Sensing Matrices and Their Application in Harmonic Detection
نویسندگان
چکیده
Abstract In this paper, a class of deterministic sensing matrices are constructed by selecting rows from Fourier matrices. These matrices have better performance in sparse recovery than random partial Fourier matrices. The coherence and restricted isometry property of these matrices are given to evaluate their capacity as compressive sensing matrices. In general, compressed sensing requires random sampling in data acquisition, which is difficult to implement in hardware. By using these sensing matrices in harmonic detection, a deterministic sampling method is provided. The frequencies and amplitudes of the harmonic components are estimated from under-sampled data. The simulations show that this under-sampled method is feasible and valid in noisy environments.
منابع مشابه
Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملDeterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Designs and System Identification
In this paper we present a new family of discrete sequences having “random like” uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the w...
متن کاملDeterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Design and System Identification
In this paper we present a new family of discrete sequences having “random like” uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the w...
متن کاملSensor Fault Detection for a class of Uncertain Nonlinear Systems Using Sliding Mode Observers
This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CSSP
دوره 35 شماره
صفحات -
تاریخ انتشار 2016